Data dissemination is a fundamental task in distributed computing. This paper studies broadcast problems in various innovative models where the communication network connecting $n$ processes is dynamic (e.g., due to mobility or failures) and controlled by an adversary. In the first model, the processes transitively communicate their ids in synchronous rounds along a rooted tree given in each round by the adversary whose goal is to maximize the number of rounds until at least one id is known by all processes. Previous research has shown a $\lceil{\frac{3n-1}{2}}\rceil-2$ lower bound and an $O(n\log\log n)$ upper bound. We show the first linear upper bound for this problem, namely $\lceil{(1 + \sqrt 2) n-1}\rceil \approx 2.4n$. We extend these results to the setting where the adversary gives in each round $k$-disjoint forests and their goal is to maximize the number of rounds until there is a set of $k$ ids such that each process knows of at least one of them. We give a $\left\lceil{\frac{3(n-k)}{2}}\right\rceil-1$ lower bound and a $\frac{\pi^2+6}{6}n+1 \approx 2.6n$ upper bound for this problem. Finally, we study the setting where the adversary gives in each round a directed graph with $k$ roots and their goal is to maximize the number of rounds until there exist $k$ ids that are known by all processes. We give a $\left\lceil{\frac{3(n-3k)}{2}}\right\rceil+2$ lower bound and a $\lceil { (1+\sqrt{2})n}\rceil+k-1 \approx 2.4n+k$ upper bound for this problem. For the two latter problems no upper or lower bounds were previously known.


翻译:数据传播是分布式计算的一项基本任务 。 此纸质研究在各种创新模型中播放了问题, 其中连接美元进程的通信网络是动态的( 例如, 由于流动性或失败), 由对手控制 。 在第一个模型中, 程序会以同步的圆形以每回合给定的根树同步的方式传递其 id 。 对手的目标是将回合数量最大化, 直到所有进程都了解至少一个 。 以前的研究显示 $\ lceil\ frac { 3n - 3\ 2\ rce2 rce2 。 之前, 将回合数量最大化的回合数量最大化, 直到有一套低的 $( log\\ log n n) 和 $ (nlog n) 。 我们展示了这个问题的第一个线性上限, 即$lceil{ (1+\\\\\\\ qrqrx) 目标 n。 我们将这些结果扩展为每回合最大回合的回合 $k $- dirxx 问题所在的设置一个 。 leax\\\\\\\\\\\\ laxrxxx rx 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
44+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月15日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员