Deep learning has proven to be successful in various domains and for different tasks. However, when it comes to private data several restrictions are making it difficult to use deep learning approaches in these application fields. Recent approaches try to generate data privately instead of applying a privacy-preserving mechanism directly, on top of the classifier. The solution is to create public data from private data in a manner that preserves the privacy of the data. In this work, two very prominent GAN-based architectures were evaluated in the context of private time series classification. In contrast to previous work, mostly limited to the image domain, the scope of this benchmark was the time series domain. The experiments show that especially GSWGAN performs well across a variety of public datasets outperforming the competitor DPWGAN. An analysis of the generated datasets further validates the superiority of GSWGAN in the context of time series generation.


翻译:译文:从私有到公共:在私有时间序列分类的背景下对GAN进行基准测试 摘要:深度学习已经在不同领域和任务中取得了成功。然而,在涉及私有数据时,有几个限制使得在这些应用领域中使用深度学习方法变得困难。最近的方法尝试在分类器顶部生成数据,而不是直接应用隐私保护机制。解决方案是以保护数据的方式创建公共数据来自私有数据。在本研究中,评估了两种非常著名的GAN-based架构,在私有时间序列分类的背景下进行了评估。不同于以往主要局限于图像领域的研究,本基准测试的范围是时间序列领域。实验表明,尤其是GSWGAN在各种公共数据集上表现良好,优于竞争对手DPWGAN。生成的数据集的分析进一步验证了GSWGAN在时间序列生成领域的优越性。

0
下载
关闭预览

相关内容

CVPR 2023 | GFPose: 在梯度场中编码三维人体姿态先验
专知会员服务
19+阅读 · 2023年3月25日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
17+阅读 · 2021年10月23日
最新《 深度学习时代的低光图像增强》综述论文,
专知会员服务
37+阅读 · 2021年4月30日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
基于深度迁移学习进行时间序列分类
PaperWeekly
14+阅读 · 2018年11月15日
【泡泡一分钟】用于深度双目的非监督适应方法(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
CVPR 2023 | GFPose: 在梯度场中编码三维人体姿态先验
专知会员服务
19+阅读 · 2023年3月25日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
17+阅读 · 2021年10月23日
最新《 深度学习时代的低光图像增强》综述论文,
专知会员服务
37+阅读 · 2021年4月30日
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
基于深度迁移学习进行时间序列分类
PaperWeekly
14+阅读 · 2018年11月15日
【泡泡一分钟】用于深度双目的非监督适应方法(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
相关基金
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员