Learning visual concepts from raw images without strong supervision is a challenging task. In this work, we show the advantages of prototype representations for understanding and revising the latent space of neural concept learners. For this purpose, we introduce interactive Concept Swapping Networks (iCSNs), a novel framework for learning concept-grounded representations via weak supervision and implicit prototype representations. iCSNs learn to bind conceptual information to specific prototype slots by swapping the latent representations of paired images. This semantically grounded and discrete latent space facilitates human understanding and human-machine interaction. We support this claim by conducting experiments on our novel data set "Elementary Concept Reasoning" (ECR), focusing on visual concepts shared by geometric objects.
翻译:在这项工作中,我们展示了理解和修改神经概念学习者潜在空间的原型演示的优点。为此,我们引入了互动概念交换网络(iCSNs),这是一个通过薄弱的监管和隐含的原型演示来学习基于概念的演示的新框架。 iCSNs学会了将概念信息与特定原型槽捆绑在一起,将配对图像的潜在显示方式互换。这种有线和离散的潜伏空间促进了人类的理解和人体-机器互动。我们支持这一主张,在我们的新型数据集“基本概念解释”上进行实验,重点是几何物体共享的视觉概念。