Neural Processes (NPs) consider a task as a function realized from a stochastic process and flexibly adapt to unseen tasks through inference on functions. However, naive NPs can model data from only a single stochastic process and are designed to infer each task independently. Since many real-world data represent a set of correlated tasks from multiple sources (e.g., multiple attributes and multi-sensor data), it is beneficial to infer them jointly and exploit the underlying correlation to improve the predictive performance. To this end, we propose Multi-Task Processes (MTPs), an extension of NPs designed to jointly infer tasks realized from multiple stochastic processes. We build our MTPs in a hierarchical manner such that inter-task correlation is considered by conditioning all per-task latent variables on a single global latent variable. In addition, we further design our MTPs so that they can address multi-task settings with incomplete data (i.e., not all tasks share the same set of input points), which has high practical demands in various applications. Experiments demonstrate that MTPs can successfully model multiple tasks jointly by discovering and exploiting their correlations in various real-world data such as time series of weather attributes and pixel-aligned visual modalities.


翻译:神经过程( NPs) 将任务视为从随机进程中实现的函数, 并通过函数的推断灵活地适应不可见的任务。 然而, 天真的 NPs 只能从单一的随机过程模拟数据, 并且设计可以独立地推断每项任务。 由于许多真实世界数据代表着来自多个来源的一组相关任务( 如多重属性和多传感器数据), 因此, 联合推断它们并利用基本关联来改进预测性能是有益的。 为此, 我们提议多任务进程( MTPs ), 用于联合推导从多个随机过程完成的任务的NPs 扩展。 我们以等级化的方式构建我们的MTPs, 这样, 通过将每个任务的潜在变量都调整到一个单一的全球潜在变量上来考虑跨任务。 此外, 我们进一步设计我们的MTPs, 以便它们能够用不完整的数据( 即并非所有任务都共享相同的输入点) 来应对多任务设置。 多任务, 这在各种应用中都具有高度的实际需求。 我们用一个层次的方式构建我们的 MTPsalimal- diralimalimal- das exignalignalignal ex ex

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
3+阅读 · 2018年11月19日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员