Simulation of 3D low-frequency electromagnetic fields propagating in the Earth is computationally expensive. We present a fictitious wave domain high-order finite-difference time-domain (FDTD) modelling method on nonuniform grids to compute frequency-domain 3D controlled-source electromagnetic (CSEM) data. The method overcomes the inconsistency issue widely present in the conventional 2nd order staggered grid finite difference scheme over nonuniform grid, achieving high accuracy with arbitrarily high order scheme. The finite-difference coefficients adaptive to the node spacings, can be accurately computed by inverting a Vandermonde matrix system using efficient algorithm. A generic stability condition applicable to nonuniform grids is established, revealing the dependence of the time step and these finite-difference coefficients. A recursion scheme using fixed point iterations is designed to determine the stretching factor to generate the optimal nonuniform grid. The grid stretching in our method reduces the number of grid points required in the discretization, making it more efficient than the standard high-order FDTD with a densely sampled uniform grid. Instead of stretching in both vertical and horizontal directions, better accuracy of our method is observed when the grid is stretched along the depth without horizontal stretching. The efficiency and accuracy of our method are demonstrated by numerical examples.


翻译:模拟在地球上传播的 3D 低频电磁场的模拟是昂贵的。 我们在非统一的网格上提出了一个假冒的波域域高阶定点差异时间范围(FDTD)模型方法,以计算频率-域域 3D控制源电磁数据。该方法克服了常规第二顺序交错的网格有限差异办法中广泛存在的不一致问题,在不统一网格上实现了高精确度,任意高顺序方案实现了高精确度。适应节点间距的有限差异系数,可以通过使用高效算法对Vandermonde矩阵系统进行反转来精确计算。 确定了适用于非统一网格的通用稳定性条件,揭示了时间步骤和这些有限差异系数的依赖性。 使用固定点的电网格差异方案旨在确定产生最佳非统一电网格的拉伸缩系数。 我们方法的网格拉伸缩小了离网点数目,使其比标准高阶的FDTD矩阵系统更有效率,使用高频度样本统一算法。 水平电网格的精确度是沿我们所观察到的垂直和水平电网格的伸展法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年2月1日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员