A time domain electric field volume integral equation (TD-EFVIE) solver is proposed for analyzing electromagnetic scattering from dielectric objects with Kerr nonlinearity. The nonlinear constitutive relation that relates electric flux and electric field induced in the scatterer is used as an auxiliary equation that complements TD-EFVIE. The ordinary differential equation system that arises from TD-EFVIE's Schaubert-Wilton-Glisson (SWG)-based discretization is integrated in time using a predictor-corrector method for the unknown expansion coefficients of the electric field. Matrix systems that arise from the SWG-based discretization of the nonlinear constitutive relation and its inverse obtained using the Pade approximant are used to carry out explicit updates of the electric field and the electric flux expansion coefficients at the predictor and the corrector stages of the time integration method. The resulting explicit marching-on-in-time (MOT) scheme does not call for any Newton-like nonlinear solver and only requires solution of sparse and well-conditioned Gram matrix systems at every step. Numerical results show that the proposed explicit MOT-based TD-EFVIE solver is more accurate than the finite-difference time-domain method that is traditionally used for analyzing transient electromagnetic scattering from nonlinear objects.
翻译:提出一个时间域电场体积整体方程式(TD-EFVIE)求解器,用于分析用Kerr非线性分析来自电磁物体的电磁散射。在散射器中导出电通量和电场的非线性组成关系,用作辅助方程式,补充TD-EFVIE。基于TD-EFVIE的Schaaubert-Wilton-Glisson(SWG)的普通差异方方程式系统,在时间整合时使用电场未知扩展系数的预测或校正法方法。基于SWG的非线性离散关系的母体系统及其利用Pade APROXImant获得的反向组成关系矩阵系统,用来对电场和电流扩张系数进行清晰更新,在预测和时间整合方法的正确阶段产生普通差异方程式。由此产生的直线即时列列(MOT)计划并不要求任何与牛顿类似的非线性扩展求解器,而只需要在每一步阶上以稀薄和完善的格格阵列内基质矩阵系统产生的矩阵分解系统,其利用Psexexxxxxxxxxxxxxxxxxxxxxx,用来显示常规电磁平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平的磁法的平平平平平平的磁法结果结果结果。