Recently, we have developed an efficient generic partition refinement algorithm, which computes behavioural equivalence on a state-based system given as an encoded coalgebra, and implemented it in the tool CoPaR. Here we extend this to a fully fledged minimization algorithm and tool by integrating two new aspects: (1) the computation of the transition structure on the minimized state set, and (2) the computation of the reachable part of the given system. In our generic coalgebraic setting these two aspects turn out to be surprisingly non-trivial requiring us to extend the previous theory. In particular, we identify a sufficient condition on encodings of coalgebras, and we show how to augment the existing interface, which encapsulates computations that are specific for the coalgebraic type functor, to make the above extensions possible. Both extensions have linear run time. Surprisingly, all information necessary for computing the reachable part of a coalgebra is already present in the data structures that we previously developed only for the computation of behavioural equivalence.
翻译:最近,我们开发了高效通用分区精细算法,该算法计算了以国家为基础的系统上的行为等值,作为编码的煤子数,并在工具 CoPaR 中应用了该算法。在这里,我们通过整合两个新的方面,将这一算法扩大到一个完全成熟的最小化算法和工具:(1) 计算最小化状态集的过渡结构,(2) 计算特定系统可达到的部分。在我们的通用的煤子值设置中,这两个方面最终成为令人惊讶的非三重性,需要我们扩展先前的理论。特别是,我们确定了煤子数编码的充足条件,我们展示了如何增强现有界面,即对煤子数类型配对调的计算进行包装,使上述扩展成为可能。两个扩展都有线性运行时间。令人惊讶的是,计算煤子的可达到部分所需的所有信息已经存在于我们以前只为计算行为等值而开发的数据结构中。