Recently, we have developed an efficient generic partition refinement algorithm, which computes behavioural equivalence on a state-based system given as an encoded coalgebra, and implemented it in the tool CoPaR. Here we extend this to a fully fledged minimization algorithm and tool by integrating two new aspects: (1) the computation of the transition structure on the minimized state set, and (2) the computation of the reachable part of the given system. In our generic coalgebraic setting these two aspects turn out to be surprisingly non-trivial requiring us to extend the previous theory. In particular, we identify a sufficient condition on encodings of coalgebras, and we show how to augment the existing interface, which encapsulates computations that are specific for the coalgebraic type functor, to make the above extensions possible. Both extensions have linear run time. Surprisingly, all information necessary for computing the reachable part of a coalgebra is already present in the data structures that we previously developed only for the computation of behavioural equivalence.


翻译:最近,我们开发了高效通用分区精细算法,该算法计算了以国家为基础的系统上的行为等值,作为编码的煤子数,并在工具 CoPaR 中应用了该算法。在这里,我们通过整合两个新的方面,将这一算法扩大到一个完全成熟的最小化算法和工具:(1) 计算最小化状态集的过渡结构,(2) 计算特定系统可达到的部分。在我们的通用的煤子值设置中,这两个方面最终成为令人惊讶的非三重性,需要我们扩展先前的理论。特别是,我们确定了煤子数编码的充足条件,我们展示了如何增强现有界面,即对煤子数类型配对调的计算进行包装,使上述扩展成为可能。两个扩展都有线性运行时间。令人惊讶的是,计算煤子的可达到部分所需的所有信息已经存在于我们以前只为计算行为等值而开发的数据结构中。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
123+阅读 · 2020年9月8日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月19日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
3+阅读 · 2018年12月18日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员