We study a network design problem (NDP) where the planner aims at selecting the optimal single-link intervention on a transportation network to minimize the travel time under Wardrop equilibrium flows. Our first result is that, if the delay functions are affine and the support of the equilibrium is not modified with interventions, the NDP may be formulated in terms of electrical quantities computed on a related resistor network. In particular, we show that the travel time variation corresponding to an intervention on a given link depends on the effective resistance between the endpoints of the link. We suggest an approach to approximate such an effective resistance by performing only local computation, and exploit it to design an efficient algorithm to solve the NDP. We discuss the optimality of this procedure in the limit of infinitely large networks, and provide a sufficient condition for its optimality. We then provide numerical simulations, showing that our algorithm achieves good performance even if the equilibrium support varies and the delay functions are non-linear.
翻译:我们研究一个网络设计问题(NDP),规划者的目的是在运输网络上选择最佳的单一链路干预,以尽量减少战争平衡流下的旅行时间。我们的第一个结果是,如果延迟功能是近似的,而平衡的支持没有通过干预来改变,那么可以按照相关阻力网络计算的电量来制定NDP。特别是,我们表明,与某一链接上的干预相对应的旅行时间变化取决于该链接端点之间的有效阻力。我们建议采用一种方法,通过只进行局部计算来接近这种有效的阻力,并利用它来设计一种有效的算法来解决NDP。我们讨论了这一程序在无限大网络范围内的最佳性,并为它的最佳性提供了充分的条件。我们然后提供了数字模拟,表明我们的算法取得了良好的性能,即使平衡支持不尽相同,延迟功能是非线性的。