We introduce Deep Augmentation, an approach to data augmentation using dropout to dynamically transform a targeted layer within a neural network, with the option to use the stop-gradient operation, offering significant improvements in model performance and generalization. We demonstrate the efficacy of Deep Augmentation through extensive experiments on contrastive learning tasks in computer vision and NLP domains, where we observe substantial performance gains with ResNets and Transformers as the underlying models. Our experimentation reveals that targeting deeper layers with Deep Augmentation outperforms augmenting the input data, and the simple network- and data-agnostic nature of this approach enables its seamless integration into computer vision and NLP pipelines.
翻译:我们提出了一种深度数据增广方法,利用dropout动态地转换神经网络中的目标层,并可选择使用stop-gradient操作,从而大幅改善模型性能和泛化能力。我们通过对计算机视觉和自然语言处理领域中的对比学习任务进行广泛实验来证明深度数据增广的有效性,在使用ResNets和Transformers作为基础模型时,我们观察到了显着的性能提升。我们的实验表明,将深度数据增广应用于更深层可以优于对输入数据进行增广,而这种方法的简单且不依赖网络和数据的特性使其能够无缝地集成到计算机视觉和自然语言处理管道中。