Identification methods for dynamic networks typically require prior knowledge of the network and disturbance topology, and often rely on solving poorly scalable non-convex optimization problems. While methods for estimating network topology are available in the literature, less attention has been paid to estimating the disturbance topology, i.e., the (spatial) noise correlation structure and the noise rank in a filtered white noise representation of the disturbance signal. In this work we present an identification method for dynamic networks, in which an estimation of the disturbance topology precedes the identification of the full dynamic network with known network topology. To this end we extend the multi-step Sequential Linear Regression and Weighted Null Space Fitting methods to deal with reduced rank noise, and use these methods to estimate the disturbance topology and the network dynamics in the full measurement situation. As a result, we provide a multi-step least squares algorithm with parallel computation capabilities and that rely only on explicit analytical solutions, thereby avoiding the usual non-convex optimizations involved. Consequently we consistently estimate dynamic networks of Box Jenkins model structure, while keeping the computational burden low. We provide a consistency proof that includes path-based data informativity conditions for allocation of excitation signals in the experimental design. Numerical simulations performed on a dynamic network with reduced rank noise clearly illustrate the potential of this method.


翻译:动态网络的识别方法通常需要事先了解网络和扰动地形学,并往往依赖于解决不易缩放的不可调控优化问题。文献中虽然有估算网络地形学的方法,但较少注意估计扰动地形学,即(空间)噪声相关结构以及扰动信号过滤的白色噪声表示器中的噪音等级。在这项工作中,我们为动态网络提供了一种识别方法,在确定具有已知网络地形学的全动态网络之前先估算扰动地形,为此,我们扩展了多步序列线性递减和微弱神经空间适应方法,以应对降级噪音,并使用这些方法估计扰动地形学和整个测量状态下的网络动态。结果,我们提供了具有平行计算能力的多步最小方方算算算法,仅依赖明确的分析解决方案,从而避免了通常的非科韦思优化。因此,我们不断估算了Box Denkin模型结构的动态网络,同时保持低度的计算负担,同时使用这些精密的神经神经空间调整方法,在全面测量情况下,我们提供了一种基于动态网络的精确度的模拟数据配置方法。我们提供了一种明确的实验性模拟模型,在模拟模型上提供一种基于数据格式分析方法。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【TAMU】最新《时间序列分析》课程笔记,527页pdf
专知会员服务
180+阅读 · 2020年9月12日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Gaussian method for the operator square root
Arxiv
0+阅读 · 2022年2月3日
Arxiv
0+阅读 · 2022年1月31日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【TAMU】最新《时间序列分析》课程笔记,527页pdf
专知会员服务
180+阅读 · 2020年9月12日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员