The aim of this paper is to address two related estimation problems arising in the setup of hidden state linear time invariant (LTI) state space systems when the dimension of the hidden state is unknown. Namely, the estimation of any finite number of the system's Markov parameters and the estimation of a minimal realization for the system, both from the partial observation of a single trajectory. For both problems, we provide statistical guarantees in the form of various estimation error upper bounds, $\rank$ recovery conditions, and sample complexity estimates. Specifically, we first show that the low $\rank$ solution of the Hankel penalized least square estimator satisfies an estimation error in $S_p$-norms for $p \in [1,2]$ that captures the effect of the system order better than the existing operator norm upper bound for the simple least square. We then provide a stability analysis for an estimation procedure based on a variant of the Ho-Kalman algorithm that improves both the dependence on the dimension and the least singular value of the Hankel matrix of the Markov parameters. Finally, we propose an estimation algorithm for the minimal realization that uses both the Hankel penalized least square estimator and the Ho-Kalman based estimation procedure and guarantees with high probability that we recover the correct order of the system and satisfies a new fast rate in the $S_2$-norm with a polynomial reduction in the dependence on the dimension and other parameters of the problem.
翻译:本文的目的是解决在隐藏状态线性变化时间(LTI)状态空间系统规模未知时,在设置隐藏状态线性变化状态(LTI)状态空间系统时出现的两个相关估计问题。 也就是说, 通过部分观察单一轨迹,估算系统Markov参数的任何有限数目,并估算系统实现的最小值。 对于这两个问题,我们以各种估计错误上限、美元回收条件和抽样复杂性估计的形式提供统计保证。 具体地说,我们首先显示,汉盖尔处罚的最低方位天花板空间系统的低价解决方案满足了$S_p$-norms的估算误差,以$p =[1,2]$为单位。 也就是说,估算系统订单的效果优于现有操作者标准,其上限为单一方平方。 然后,我们对基于Ho-K算的变式估算程序的评估程序提供了稳定性分析,该变式既提高了对马可计量参数的维度,也提高了Hankel矩阵矩阵中最低值。 最后,我们建议对基于HankS-prestal imal imal imal imal sal imal sal sal sal sal dalupalupal sal sal laction the sal immal laphal laction 和我们使用了快速平价的快速程序的快速程序。