The shipping industry is one of the strongest anthropogenic emitters of $\text{NO}_\text{x}$ -- substance harmful both to human health and the environment. The rapid growth of the industry causes societal pressure on controlling the emission levels produced by ships. All the methods currently used for ship emission monitoring are costly and require proximity to a ship, which makes global and continuous emission monitoring impossible. A promising approach is the application of remote sensing. Studies showed that some of the $\text{NO}_\text{2}$ plumes from individual ships can visually be distinguished using the TROPOspheric Monitoring Instrument on board the Copernicus Sentinel 5 Precursor (TROPOMI/S5P). To deploy a remote sensing-based global emission monitoring system, an automated procedure for the estimation of $\text{NO}_\text{2}$ emissions from individual ships is needed. The extremely low signal-to-noise ratio of the available data as well as the absence of ground truth makes the task very challenging. Here, we present a methodology for the automated segmentation of $\text{NO}_\text{2}$ plumes produced by seagoing ships using supervised machine learning on TROPOMI/S5P data. We show that the proposed approach leads to a more than a 20\% increase in the average precision score in comparison to the methods used in previous studies and results in a high correlation of 0.834 with the theoretically derived ship emission proxy. This work is a crucial step toward the development of an automated procedure for global ship emission monitoring using remote sensing data.


翻译:造船业是最强的人为 $\text{NO}_\text{x}$ 排放行业之一,其排放会对人类健康和环境造成危害。行业的迅速增长导致社会对控制船舶排放水平的压力不断增加。目前用于船舶排放监控的所有方法都很昂贵,并且需要接近船舶,这使得全球和连续的排放监控不可能。一种有前途的方法是应用遥感技术。研究表明,使用欧洲气象卫星5号的 TROPOspheric 监测仪器的部分 $\text{NO}_\text{2}$ 排放区域可以在单个船舶上被区分出来。为了部署基于遥感技术的全球排放监控系统,需要一个自动化程序来估计单个船舶的 $\text{NO}_\text{2}$ 排放量。可用数据的极低信噪比和地面真实数据的缺失使得这项任务非常具有挑战性。本文提出了一种基于 TROPOMI/S5P 数据的监督机器学习方法,用于自动划分海运船舶产生的 $\text{NO}_\text{2}$ 排放区域。我们展示了所提出的方法比以前的研究方法的平均精度分数提高了 20\% 以上,并且与理论上导出的船舶排放代理相关性高达 0.834。这项工作是向开发使用遥感数据进行全球船舶排放监测的自动化程序迈出的关键一步。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员