The shipping industry is one of the strongest anthropogenic emitters of $\text{NO}_\text{x}$ -- substance harmful both to human health and the environment. The rapid growth of the industry causes societal pressure on controlling the emission levels produced by ships. All the methods currently used for ship emission monitoring are costly and require proximity to a ship, which makes global and continuous emission monitoring impossible. A promising approach is the application of remote sensing. Studies showed that some of the $\text{NO}_\text{2}$ plumes from individual ships can visually be distinguished using the TROPOspheric Monitoring Instrument on board the Copernicus Sentinel 5 Precursor (TROPOMI/S5P). To deploy a remote sensing-based global emission monitoring system, an automated procedure for the estimation of $\text{NO}_\text{2}$ emissions from individual ships is needed. The extremely low signal-to-noise ratio of the available data as well as the absence of ground truth makes the task very challenging. Here, we present a methodology for the automated segmentation of $\text{NO}_\text{2}$ plumes produced by seagoing ships using supervised machine learning on TROPOMI/S5P data. We show that the proposed approach leads to a more than a 20\% increase in the average precision score in comparison to the methods used in previous studies and results in a high correlation of 0.834 with the theoretically derived ship emission proxy. This work is a crucial step toward the development of an automated procedure for global ship emission monitoring using remote sensing data.
翻译:造船业是最强的人为 $\text{NO}_\text{x}$ 排放行业之一,其排放会对人类健康和环境造成危害。行业的迅速增长导致社会对控制船舶排放水平的压力不断增加。目前用于船舶排放监控的所有方法都很昂贵,并且需要接近船舶,这使得全球和连续的排放监控不可能。一种有前途的方法是应用遥感技术。研究表明,使用欧洲气象卫星5号的 TROPOspheric 监测仪器的部分 $\text{NO}_\text{2}$ 排放区域可以在单个船舶上被区分出来。为了部署基于遥感技术的全球排放监控系统,需要一个自动化程序来估计单个船舶的 $\text{NO}_\text{2}$ 排放量。可用数据的极低信噪比和地面真实数据的缺失使得这项任务非常具有挑战性。本文提出了一种基于 TROPOMI/S5P 数据的监督机器学习方法,用于自动划分海运船舶产生的 $\text{NO}_\text{2}$ 排放区域。我们展示了所提出的方法比以前的研究方法的平均精度分数提高了 20\% 以上,并且与理论上导出的船舶排放代理相关性高达 0.834。这项工作是向开发使用遥感数据进行全球船舶排放监测的自动化程序迈出的关键一步。