In the first part of the article, we propose a data augmentation scheme for improving the rate of convergence of the EM algorithm in estimating Gaussian state space models. The scheme considers a linear transformation of the latent states in which two working parameters are introduced for rescaling and recentering. We derive optimal values of the working parameters by minimizing the fraction of missing information, and study their large sample properties and dependence on the persistence and signal-to-noise ratio. An alternating expectation-conditional maximization (AECM) algorithm is designed to take advantage of the proposed scheme, and shown to be a more attractive alternative to the centered parametrization (CP) or noncentered parametrization (NCP). In the second part, we extend earlier results to Bayesian Markov chain Monte Carlo (MCMC) algorithms for non-Gaussian state space models, focusing on the stochastic volatility and stochastic conditional duration models. A block-specific reparametrization (BSR) strategy for multi-block MCMC samplers is proposed which enables the EM data augmentation scheme to be applied to non-Gaussian models via a mixture of normals approximation. Applications on simulated data and benchmark real data sets indicate that the BSR strategy is able to yield improvements in simulation efficiency compared with the CP or NCP, and sometimes even over ASIS (which interweaves the CP and NCP).


翻译:在文章的第一部分,我们提出一个数据增强计划,以提高EM算法在估计高萨州空间模型方面的趋同率。这个计划考虑对潜在状态进行线性转换,采用两种工作参数来调整和更新。我们通过最大限度地减少缺失的信息的一小部分,并研究其大量抽样性质和依赖持久性和信号至音频比率,得出工作参数的最佳价值。一个交替的预期条件最大化算法(AECM)旨在利用拟议的计划,并显示它是中心准美化(CP)或非中心准美化(NCP)的更有吸引力的替代物。在第二部分,我们将早先的结果推广到巴伊西亚马科夫连锁蒙特卡洛(MCMC)的非加澳洲国家空间模型的算法,重点是其大样本性质和对持久性和信号至信号至音频比比比率模型。一个针对多块的重新修复(BSRM)战略,使EM数据增强计划甚至能够适用于非加亚马科夫·卡洛(Monte-Misal Resiral Resiral Resmal Resmal Resmal Resmissional Resmissional) 和BSISSISAlipplical 数据升级模型显示比比标准的模型显示一个正常的模型。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月27日
Arxiv
0+阅读 · 2021年7月23日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员