Estimating associations between spatial covariates and responses - rather than merely predicting responses - is central to environmental science, epidemiology, and economics. For instance, public health officials might be interested in whether air pollution has a strictly positive association with a health outcome, and the magnitude of any effect. Standard machine learning methods often provide accurate predictions but offer limited insight into covariate-response relationships. And we show that existing methods for constructing confidence (or credible) intervals for associations can fail to provide nominal coverage in the face of model misspecification and nonrandom locations - despite both being essentially always present in spatial problems. We introduce a method that constructs valid frequentist confidence intervals for associations in spatial settings. Our method requires minimal assumptions beyond a form of spatial smoothness and a homoskedastic Gaussian error assumption. In particular, we do not require model correctness or covariate overlap between training and target locations. Our approach is the first to guarantee nominal coverage in this setting and outperforms existing techniques in both real and simulated experiments. Our confidence intervals are valid in finite samples when the noise of the Gaussian error is known, and we provide an asymptotically consistent estimation procedure for this noise variance when it is unknown.
翻译:暂无翻译