Budget pacing is a popular service that has been offered by major internet advertising platforms since their inception. Budget pacing systems seek to optimize advertiser returns subject to budget constraints through smooth spending of advertiser budgets. In the past few years, autobidding products that provide real-time bidding as a service to advertisers have seen a prominent rise in adoption. A popular autobidding stategy is value maximization subject to return-on-spend (ROS) constraints. For historical or business reasons, the algorithms that govern these two services, namely budget pacing and RoS pacing, are not necessarily always a single unified and coordinated entity that optimizes a global objective subject to both constraints. The purpose of this work is to study the benefits of coordinating budget and RoS pacing services from an empirical and theoretical perspective. We compare (a) a sequential algorithm that first constructs the advertiser's ROS-pacing bid and then lowers that bid for budget pacing, with (b) the optimal joint algorithm that optimizes advertiser returns subject to both budget and ROS constraints. We establish the superiority of joint optimization both theoretically as well as empirically based on data from a large advertising platform. In the process, we identify a third algorithm with minimal interaction between services that retains the theoretical properties of the joint optimization algorithm and performs almost as well empirically as the joint optimization algorithm. This algorithm eases the transition from a sequential to a fully joint implementation by minimizing the amount of interaction between the two services.


翻译:主要互联网广告平台自建立以来就一直在提供一种受欢迎的服务,即预算节奏和汇率节奏。预算节奏制度力求通过广告商预算的顺利支出,在预算拮据的情况下优化广告回报;在过去几年里,作为广告商服务的实时投标产品的自动招标明显提高。流行的自动招标状态是价值最大化,但前提是在使用时间上进行回扣(ROS)的制约。基于历史或商业原因,管理这两种服务的算法,即预算节奏和汇率节奏,不一定总是一个单一的统一和协调实体,在两种制约下优化全球目标。这项工作的目的是从实证和理论角度研究协调预算和RoS节奏服务的好处。我们比较了(a)一种顺序算法,首先构建广告商ROS节奏投标,然后降低预算节奏投标,然后(b)一种最佳联合算法,在预算和汇率节奏下优化广告商回报,在两种情况下优化全球目标。我们从理论上和罗斯节节节律服务之间的联合优化,在从理论上,在从高水平上,从一个数据上,从一个联合优化到一个联合的逻辑性演算中,从一个从一个最优化到一个最优化的流程中,从一个从我们最起码的流程,从一个最起码的流程,从一个数据,从一个从一个从一个从一个最优化到一个最优化到一个从一个从一个最优化到一个从一个从一个数据到一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,从一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员