We address the cost-sensitive feature acquisition problem, where misclassifying an instance is costly but the expected misclassification cost can be reduced by acquiring the values of the missing features. Because acquiring the features is costly as well, the objective is to acquire the right set of features so that the sum of the feature acquisition cost and misclassification cost is minimized. We describe the Value of Information Lattice (VOILA), an optimal and efficient feature subset acquisition framework. Unlike the common practice, which is to acquire features greedily, VOILA can reason with subsets of features. VOILA efficiently searches the space of possible feature subsets by discovering and exploiting conditional independence properties between the features and it reuses probabilistic inference computations to further speed up the process. Through empirical evaluation on five medical datasets, we show that the greedy strategy is often reluctant to acquire features, as it cannot forecast the benefit of acquiring multiple features in combination.


翻译:我们处理成本敏感的地物获取问题,在这种问题上,错误划分实例的成本昂贵,但预期的分类错误成本可以通过获得缺失特征的价值来降低。由于获得这些特征的成本也很高,因此我们的目标是获得正确的地物组,以便尽可能减少地物获取成本和错误分类成本的总和。我们描述了信息Lattice(VOILA)的价值,这是一个最佳和高效的地物子获取框架。不同于通常的做法,即贪婪地获取特征,VOILA可以与特征的子集来理解。VOILA通过发现和利用这些特征之间的有条件独立属性,有效地搜索可能的地物子组空间,并重新利用概率推算方法来进一步加快进程。我们通过对五个医疗数据集的经验评估,我们表明贪婪战略往往不愿意获得特征,因为它无法预测获得多重特征组合的好处。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员