In this study, we propose a novel visual localization approach to accurately estimate six degrees of freedom (6-DoF) poses of the robot within the 3D LiDAR map based on visual data from an RGB camera. The 3D map is obtained utilizing an advanced LiDAR-based simultaneous localization and mapping (SLAM) algorithm capable of collecting a precise sparse map. The features extracted from the camera images are compared with the points of the 3D map, and then the geometric optimization problem is being solved to achieve precise visual localization. Our approach allows employing a scout robot equipped with an expensive LiDAR only once - for mapping of the environment, and multiple operational robots with only RGB cameras onboard - for performing mission tasks, with the localization accuracy higher than common camera-based solutions. The proposed method was tested on the custom dataset collected in the Skolkovo Institute of Science and Technology (Skoltech). During the process of assessing the localization accuracy, we managed to achieve centimeter-level accuracy; the median translation error was as low as 1.3 cm. The precise positioning achieved with only cameras makes possible the usage of autonomous mobile robots to solve the most complex tasks that require high localization accuracy.
翻译:在此研究中,我们提出一种新的视觉本地化方法,根据 RGB 相机的视觉数据,精确估计3D LiDAR 地图中机器人的六度自由(6-DoF)配置(6-DoF) 。 3D 地图使用先进的基于 LiDAR 的同步本地化和映射算法(SLAM) 算法,能够收集精确的稀疏地图。 从相机图像中提取的特征与 3D 地图的点比较,然后解决了几何优化问题,以便实现精确的本地化。 我们的方法允许使用一台配备昂贵的利DAR 的侦察机器人,只用于绘制环境图,以及多台操作机器人,机上只有 RGB 相机,用于执行飞行任务,其本地化精度高于普通的相机解决方案。 拟议的方法是在Skolkovo 科技研究所(Skoltech) 所收集的定制数据集上测试的。 在评估本地化精度的过程中,我们得以实现本地化精度的精确度; 中位翻译错误只有1.3 cm 。 精确的定位只能使用自主移动机器人来解决最复杂的任务。