Current global re-localization algorithms are built on top of localization and mapping methods and heavily rely on scan matching and direct point cloud feature extraction and therefore are vulnerable in featureless demanding environments like caves and tunnels. In this article, we propose a novel global re-localization framework that: a) does not require an initial guess, like most methods do, while b) it has the capability to offer the top-k candidates to choose from and last but not least provides an event-based re-localization trigger module for enabling, and c) supporting completely autonomous robotic missions. With the focus on subterranean environments with low features, we opt to use descriptors based on range images from 3D LiDAR scans in order to maintain the depth information of the environment. In our novel approach, we make use of a state-of-the-art data-driven descriptor extraction framework for place recognition and orientation regression and enhance it with the addition of a junction detection module that also utilizes the descriptors for classification purposes.
翻译:目前的全球重新定位算法建立在本地化和绘图方法之上,并严重依赖扫描匹配和直接点云特征提取,因此在洞穴和隧道等要求不高的奇特环境中很脆弱。在本篇文章中,我们提议一个新的全球重新定位框架:(a) 与大多数方法一样,不需要初步猜测,而(b) 它有能力向顶级候选人提供从和最后但并非最不重要的是提供一个基于事件的重新定位触发模块,用于启动;以及(c) 支持完全自主的机器人飞行任务。由于侧重于具有低特征的地下环境,我们选择使用基于3D LiDAR扫描图像范围的描述符,以保持环境的深度信息。在我们的新方法中,我们利用一个最先进的数据驱动描述符提取框架来进行地点识别和定向回归,并增加一个连接检测模块,同时利用描述符进行分类。