Permutation arrays under the Chebyshev metric have been considered for error correction in noisy channels. Let $P(n,d)$ denote the maximum size of any array of permutations on $n$ symbols with pairwise Chebyshev distance $d$. We give new techniques and improved upper and lower bounds on $P(n,d)$, including a precise formula for $P(n,2)$.
翻译:切比谢夫标准下的变异阵列已被考虑用于在吵闹的频道中校正错误。让 $P(n,d)$ 表示以美元为单位、配对的切比谢夫距离$d$为单位的任何组合的最大变异规模。 我们给出新技术,并改进美元(n,d) 的上限和下限,包括美元(n,d) 的精确公式。</s>