The Tukey depth of a flat with respect to a point set is a concept that appears in many areas of discrete and computational geometry. In particular, the study of centerpoints, center transversals, Ham Sandwich cuts, or $k$-edges can all be phrased in terms of depths of certain flats with respect to one or more point sets. In this work, we introduce the Tukey depth histogram of $k$-flats in $\mathbb{R}^d$ with respect to a point set $P$, which is a vector $D^{k,d}(P)$, whose $i$'th entry $D^{k,d}_i(P)$ denotes the number of $k$-flats spanned by $k+1$ points of $P$ that have Tukey depth $i$ with respect to $P$. As our main result, we give a complete characterization of the depth histograms of points, that is, for any dimension $d$ we give a description of all possible histograms $D^{0,d}(P)$. This then allows us to compute the exact number of possible such histograms.
翻译:在一个点数组中,平面的塔基深度是一个概念,它出现在一个离散和计算几何的许多领域。特别是,对中点、中转截面、哈姆桑威奇切割或美元对立面的研究,都可以以某些平面对一个或多个点数的深度来表述。在这项工作中,我们引入了Tukey深度直径直径直方方图,以$\mathb{R ⁇ d$计算,对一个定点的美元,即矢量方$ ⁇ k,d}(P)$,其第1项中方美元对中点、中转截面、哈姆桑威奇切割或美元对立面的研究,都可以用美元+1美元对准某些平面的美元对立面的深度直方图。作为我们的主要结果,我们对各点的深度直方图作了完整的描述,即任何维值,我们用美元来描述所有可能的其直方图数 $D ⁇ 0,d}(P) 美元,从而可以将直方方图的直方数调。