We study information projections with respect to statistical $f$-divergences between any two location-scale families. We consider a multivariate generalization of the location-scale families which includes the elliptical and the spherical subfamilies. By using the action of the multivariate location-scale group, we show how to reduce the calculation of $f$-divergences between any two location-scale densities to canonical settings involving standard densities, and derive thereof fast Monte Carlo estimators of $f$-divergences with good properties. Finally, we prove that the minimum $f$-divergence between a prescribed density of a location-scale family and another location-scale family is independent of the prescribed location-scale parameter. We interpret geometrically this property.


翻译:我们研究任一两地级家庭之间以美元计价的统计信息预测,我们考虑对包括椭圆形和球形次家庭在内的地点级家庭进行多种变式的概括化,通过多变地点级小组的行动,我们展示如何减少任何两个地点级的密度之间的美元差异,以计算标准密度的罐体环境的美元差异,并由此得出具有良好属性的蒙特卡洛快速估计值。最后,我们证明,一个地点级家庭和另一个地点级家庭规定密度之间的最低美元差异,独立于规定的地点级参数。我们从几何角度解释这一属性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
已删除
将门创投
11+阅读 · 2019年4月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
已删除
将门创投
11+阅读 · 2019年4月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员