We study the problem of predicting as well as the best linear predictor in a bounded Euclidean ball with respect to the squared loss. When only boundedness of the data generating distribution is assumed, we establish that the least squares estimator constrained to a bounded Euclidean ball does not attain the classical $O(d/n)$ excess risk rate, where $d$ is the dimension of the covariates and $n$ is the number of samples. In particular, we construct a bounded distribution such that the constrained least squares estimator incurs an excess risk of order $\Omega(d^{3/2}/n)$ hence refuting a recent conjecture of Ohad Shamir [JMLR 2015]. In contrast, we observe that non-linear predictors can achieve the optimal rate $O(d/n)$ with no assumptions on the distribution of the covariates. We discuss additional distributional assumptions sufficient to guarantee an $O(d/n)$ excess risk rate for the least squares estimator. Among them are certain moment equivalence assumptions often used in the robust statistics literature. While such assumptions are central in the analysis of unbounded and heavy-tailed settings, our work indicates that in some cases, they also rule out unfavorable bounded distributions.
翻译:我们研究了在捆绑的欧几里德球中对平方损失进行预测和最佳线性预测的问题。当仅假设生成数据分布的界限性时,我们确定受捆绑的欧几里德球限制的最不平方估计者没有达到传统的超风险率(d/n)美元,其中美元是共差的尺寸,美元是样本数量是美元。特别是,我们构建了一种约束性分布式分配式假设,使受约束的最小方平方估计者面临超额风险的美元/欧米加(d_3/2}/n),从而驳斥了Hoad Shamir [JMICLR 2015] 最近的一个预测。相比之下,我们观察到,非线性预测者能够达到最佳的美元(d/n)美元,而没有假设的是共差价分布。我们讨论的额外分配式假设足以保证最低方计算者超额风险率。在它们中间进行严格的分析时,这些假设通常在不固定的中央假设中进行严格的排序。