We develop a contrastive framework for learning better prior distributions for Bayesian Neural Networks (BNNs) using unlabelled data. With this framework, we propose a practical BNN algorithm that offers the label-efficiency of self-supervised learning and the principled uncertainty estimates of Bayesian methods. Finally, we demonstrate the advantages of our approach for data-efficient learning in semi-supervised and low-budget active learning problems.


翻译:我们采用对比方法开发了一个框架,利用未标记数据来学习更好的贝叶斯神经网络(BNNs)先验分布。通过这个框架,我们提出了一个实用的BNN算法,它既具有自监督学习的标签效率,又具有贝叶斯方法的有理不确定性估计。最后,我们演示了我们的方法在半监督学习和低预算主动学习问题中实现数据有效的学习的优点。

0
下载
关闭预览

相关内容

强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关论文
相关基金
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员