In recent years, state-of-the-art methods in computer vision have utilized increasingly deep convolutional neural network architectures (CNNs), with some of the most successful models employing hundreds or even thousands of layers. A variety of pathologies such as vanishing/exploding gradients make training such deep networks challenging. While residual connections and batch normalization do enable training at these depths, it has remained unclear whether such specialized architecture designs are truly necessary to train deep CNNs. In this work, we demonstrate that it is possible to train vanilla CNNs with ten thousand layers or more simply by using an appropriate initialization scheme. We derive this initialization scheme theoretically by developing a mean field theory for signal propagation and by characterizing the conditions for dynamical isometry, the equilibration of singular values of the input-output Jacobian matrix. These conditions require that the convolution operator be an orthogonal transformation in the sense that it is norm-preserving. We present an algorithm for generating such random initial orthogonal convolution kernels and demonstrate empirically that they enable efficient training of extremely deep architectures.


翻译:近年来,计算机视觉中最先进的方法利用了越来越深的进化神经网络结构(CNNs),其中一些最成功的模型使用数百甚至数千层。各种病理学,如消失/爆炸梯度等,使得这种深层网络的训练具有挑战性。虽然剩余连接和批次正常化确实使这些深度的培训成为可能,但仍然不清楚这种专业结构设计是否真正必要来培训深重CNN。在这项工作中,我们证明仅仅利用适当的初始化计划就可以用一万层或更多层来培训香草CNNs。我们从理论上讲,通过开发一种信号传播的中下流理论,并通过对动态异度测量条件进行定性,对投入-输出的Jacobian矩阵的单值进行均衡,这些条件要求演算操作者是常规意义上的骨质转变。我们为产生这种随机的初始或超深层进化内核内核提供了一种算法,并从经验上表明它们能够使极深的结构得到有效培训。

2
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年10月1日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2018年8月17日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年10月1日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2018年8月17日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
7+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员