Large language models (LLMs) have shown impressive emergent abilities in a wide range of tasks, but still face challenges in handling complex reasoning problems. Previous works like chain-of-thought (CoT) and tree-of-thoughts (ToT) have predominately focused on enhancing accuracy, but overlook the rapidly increasing token cost, which could be particularly problematic for open-ended real-world tasks with huge solution spaces. Motivated by the dual process theory of human cognition, we propose "Synergy of Thoughts" (SoT) to unleash the synergistic potential of hybrid LLMs for efficient reasoning. By default, SoT uses smaller-scale language models to generate multiple low-cost reasoning thoughts, which resembles the parallel intuitions produced by System 1. If these intuitions exhibit conflicts, SoT will invoke the reflective reasoning of scaled-up language models to emulate the intervention of System 2, which will override the intuitive thoughts and rectify the reasoning process. This framework is model-agnostic and training-free, which can be flexibly implemented with various off-the-shelf LLMs. Experiments on six representative reasoning tasks show that SoT substantially reduces the token cost by 38.3%-75.1%, and simultaneously achieves state-of-the-art reasoning accuracy and solution diversity. Notably, the average token cost reduction on open-ended tasks reaches up to 69.1%. Code repo with all prompts will be released upon publication.
翻译:暂无翻译