Many popular eigensolvers for large and sparse Hermitian matrices or matrix pairs can be interpreted as accelerated block preconditioned gradient (BPG) iterations in order to analyze their convergence behavior by composing known estimates. An important feature of BPG is the cluster robustness, i.e., reasonable performance for computing clustered eigenvalues is ensured by a sufficiently large block size. This feature can easily be explained for exact-inverse (exact shift-inverse) preconditioning by adapting classical estimates on nonpreconditioned eigensolvers, whereas the existing results for more general preconditioning are still improvable. We expect to extend certain sharp estimates for the corresponding vector iterations to BPG where proper bounds of convergence rates of individual Ritz values are to be derived. Such an extension has been achieved for BPG with fixed step sizes in [Math. Comp. 88 (2019), 2737--2765]. The present paper deals with the more practical case that the step sizes are implicitly optimized by the Rayleigh-Ritz method. Our new estimates improve some previous ones in view of concise and more flexible bounds.
翻译:对于大而分散的埃米提亚矩阵或矩阵配对,许多流行的乙醇溶液可被解释为加速的块状预设梯度(BPG)迭代,以便通过编制已知的估计数来分析其趋同行为。BPG的一个重要特征是集群的稳健性,即计算集成的乙基值的合理性能得到足够大块尺寸的保证。这一特征很容易被解释为精确反向的先决条件,即调整关于无预设的乙基质的典型估计值,而关于更一般性的前提条件的现有结果仍然无法实现。我们期望将相应的矢量迭代的某些精确估计扩展至BPG,以便得出单个Ritz值的恰当趋同率的界限。对于具有固定步数的BPG,已经实现了这种扩展[Math.comp.88(2019),2737-2765]。本文件涉及更实际的情况是,Rayleiley-Ritz方法暗地优化了级尺寸。我们的新估计改进了以前的一些精确和较灵活的界限。