The study of concomitants has recently met a renewed interest due to its applications in selection procedures. For instance, concomitants are used in ranked-set sampling, to achieve efficiency and reduce cost when compared to the simple random sampling. In parallel, the search for new methods to provide a rich description of extremal dependence among multiple time series has rapidly grown, due also to its numerous practical implications and the lack of suitable models to assess it. Here, our aim is to investigate extremal dependence when choosing the concomitants approach. In this study, we show how the extremal dependence of a vector $(X, Y)$ impacts the asymptotic behavior of the maxima over subsets of concomitants. Furthermore, discussing the various conditions and results, we investigate how transformations of the marginal distributions of $X$ and $Y$ influence the degeneracy of the limit.
翻译:最近,由于在选择程序方面的应用,对伴生物的研究最近又重新产生了兴趣,例如,在定级抽样中使用伴生物,以提高效率和降低成本,与简单的随机抽样相比,同时,寻求新方法,对多种时间序列的极端依赖性提供丰富的描述,由于它涉及许多实际问题,而且缺乏适当的评估模型,因此这种研究迅速增加。在这里,我们的目标是在选择伴生物方法时调查极端依赖性。在本研究中,我们展示了矢量(X)和Y)的极端依赖性如何影响最高值对伴生物的无药可治行为。此外,我们讨论了各种条件和结果,我们调查了美元和美元边际分布的变化如何影响极限的退化。