Density functional theory (DFT) is a powerful computational method used to obtain physical and chemical properties of materials. In the materials discovery framework, it is often necessary to virtually screen a large and high-dimensional chemical space to find materials with desired properties. However, grid searching a large chemical space with DFT is inefficient due to its high computational cost. We propose an approach utilizing Bayesian optimization (BO) with an artificial neural network kernel to enable smart search. This method leverages the BO algorithm, where the neural network, trained on a limited number of DFT results, determines the most promising regions of the chemical space to explore in subsequent iterations. This approach aims to discover materials with target properties while minimizing the number of DFT calculations required. To demonstrate the effectiveness of this method, we investigated 63 doped graphene quantum dots (GQDs) with sizes ranging from 1 to 2 nm to find the structure with the highest light absorbance. Using time-dependent DFT (TDDFT) only 12 times, we achieved a significant reduction in computational cost, approximately 20% of what would be required for a full grid search, by employing the BO algorithm with a neural network kernel. Considering that TDDFT calculations for a single GQD require about half a day of wall time on high-performance computing nodes, this reduction is substantial. Our approach can be generalized to the discovery of new drugs, chemicals, crystals, and alloys with high-dimensional and large chemical spaces, offering a scalable solution for various applications in materials science.
翻译:暂无翻译