Many machine learning applications, e.g., privacy-preserving learning, algorithmic fairness and domain adaptation/generalization, involve learning the so-called invariant representations that achieve two competing goals: To maximize information or accuracy with respect to a target while simultaneously maximizing invariance or independence with respect to a set of protected features (e.g.\ for fairness, privacy, etc). Despite its abundant applications in the aforementioned domains, theoretical understanding on the limits and tradeoffs of invariant representations is still severely lacking. In this paper, we provide an information theoretic analysis of this general and important problem under both classification and regression settings. In both cases, we analyze the inherent tradeoffs between accuracy and invariance by providing a geometric characterization of the feasible region in the information plane, where we connect the geometric properties of this feasible region to the fundamental limitations of the tradeoff problem. In the regression setting, we further give a complete and exact characterization of the frontier between accuracy and invariance. Although our contributions are mainly theoretical, we also demonstrate the practical applications of our results in certifying the suboptimality of certain representation learning algorithms in both classification and regression tasks. Our results shed new light on this fundamental problem by providing insights on the interplay between accuracy and invariance. These results deepen our understanding of this fundamental problem and may be useful in guiding the design of future representation learning algorithms.


翻译:许多机器学习应用,例如隐私保护学习、算法公平以及域性调整/概括,涉及学习所谓的差异性表述,以实现两个相互竞争的目标: 尽可能扩大目标的信息或准确性,同时尽量扩大保护性特征(例如公平、隐私等)方面的差异或独立性; 尽管在上述领域应用了大量,但对差异性表述的局限性和取舍的理论理解仍然严重不足; 在本文件中,我们对分类和回归环境下的这一普遍和重要问题进行了信息理论分析; 在这两种情况下,我们分析准确性和差异之间的内在权衡,方法是对信息平面上可行的区域进行几何性描述,将这一可行区域的几何性特征与交易问题的根本局限性联系起来; 在回归过程中,我们进一步完整和准确地描述准确性和差异性表述的界限; 尽管我们的贡献主要是理论性的,但我们在验证某些代表性的亚性分析结果时,我们还实际应用了我们的结果,在验证某些代表性的亚性之间,我们在信息平面上的精确性和差异性之间,我们通过在基本设计性分类和回归性理解中提供这种基本理解的深层次性分析,从而了解我们的基本理解问题。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
65+阅读 · 2021年6月18日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员