Graph neural networks (GNNs) are designed for semi-supervised node classification on graphs where only a subset of nodes have class labels. However, under extreme cases when very few labels are available (e.g., 1 labeled node per class), GNNs suffer from severe performance degradation. Specifically, we observe that existing GNNs suffer from unstable training process on few-labeled graphs, resulting to inferior performance on node classification. Therefore, we propose an effective framework, Stabilized Self-Training (SST), which is applicable to existing GNNs to handle the scarcity of labeled data, and consequently, boost classification accuracy. We conduct thorough empirical and theoretical analysis to support our findings and motivate the algorithmic designs in SST. We apply SST to two popular GNN models GCN and DAGNN, to get SSTGCN and SSTDA methods respectively, and evaluate the two methods against 10 competitors over 5 benchmarking datasets. Extensive experiments show that the proposed SST framework is highly effective, especially when few labeled data are available. Our methods achieve superior performance under almost all settings over all datasets. For instance, on a Cora dataset with only 1 labeled node per class, the accuracy of SSTGCN is 62.5%, 17.9% higher than GCN, and the accuracy of SSTDA is 66.4%, which outperforms DAGNN by 6.6%.


翻译:GNNS(GNNs)是设计用于在只有一组节点有类标签的图形上进行半监督的节点分类的。然而,在极少贴标签的极端情况下(例如每类有一个标签的节点),GNNS的性能严重退化。具体地说,我们观察到,现有的GNNS在少数标签的图表上受到不稳定的培训过程,导致节点分类的性能低劣。因此,我们提议了一个有效的框架,即稳定自我培训(SST),它适用于现有的GNNS处理标签数据稀缺的情况,从而提高分类的准确性。我们进行了彻底的经验和理论分析,以支持我们的调查结果,激励SST的算法设计。我们把SSTSST应用到两个流行的GNNN模型GCN和DNNNWN(DNN),分别获得SSTCN和SSTDA方法,并对照5个基准数据集的10个竞争者对两种方法进行评估。广泛的实验表明,拟议的SST框架非常有效,特别是当几乎没有标签的数据。我们的方法在几乎所有的SNEAD%的精确度之下,我们的方法在几乎所有的SSTADM5级中都比SDSDAD的等级为1。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
10+阅读 · 2021年2月26日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员