The count-min sketch (CMS) is a time and memory efficient randomized data structure that provides estimates of tokens' frequencies in a data stream of tokens, i.e. point queries, based on random hashed data. A learning-augmented version of the CMS, referred to as CMS-DP, has been proposed by Cai, Mitzenmacher and Adams (\textit{NeurIPS} 2018), and it relies on Bayesian nonparametric (BNP) modeling of the data stream of tokens via a Dirichlet process (DP) prior, with estimates of a point query being obtained as suitable mean functionals of the posterior distribution of the point query, given the hashed data. While the CMS-DP has proved to improve on some aspects of CMS, it has the major drawback of arising from a ``constructive" proof that builds upon arguments tailored to the DP prior, namely arguments that are not usable for other nonparametric priors. In this paper, we present a ``Bayesian" proof of the CMS-DP that has the main advantage of building upon arguments that are usable, in principle, within a broad class of nonparametric priors arising from normalized completely random measures. This result leads to develop a novel learning-augmented CMS under power-law data streams, referred to as CMS-PYP, which relies on BNP modeling of the data stream of tokens via a Pitman-Yor process (PYP) prior. Under this more general framework, we apply the arguments of the ``Bayesian" proof of the CMS-DP, suitably adapted to the PYP prior, in order to compute the posterior distribution of a point query, given the hashed data. Applications to synthetic data and real textual data show that the CMS-PYP outperforms the CMS and the CMS-DP in estimating low-frequency tokens, which are known to be of critical interest in textual data, and it is competitive with respect to a variation of the CMS designed for low-frequency tokens. An extension of our BNP approach to more general queries is also discussed.


翻译:计数进程草图( CMS) 是一个时间和记忆高效的随机数据结构, 它通过一个 Drichlet 进程( DP), 以随机散列数据为基础, 即点查询, 提供对象征的象征频率的估计。 Cai, Mitzenmacher 和 Adams (\ textit{NeurIPS} 2018) 提出了一个学习强化版的 CMS 。 它依赖于 Bayesian 的非参数( BPNP) 模式, 通过一个 Drichlet 进程( DP), 提供对标志流的数据流的估算, 即基于随机流的 CMS- PMS, 以鼠标的后端点分配为合适的平均值。 CMS- PRODM 的预估测点参数, 以预变现的预变现程序, 以预变现的C- PMS 数据流为原始数据流, 以预变现的预变现程序为原始数据。

0
下载
关闭预览

相关内容

CMS:内容管理系统
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月24日
Arxiv
0+阅读 · 2022年10月24日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员