Many successful deep learning architectures are equivariant to certain transformations in order to conserve parameters and improve generalization: most famously, convolution layers are equivariant to shifts of the input. This approach only works when practitioners know the symmetries of the task and can manually construct an architecture with the corresponding equivariances. Our goal is an approach for learning equivariances from data, without needing to design custom task-specific architectures. We present a method for learning and encoding equivariances into networks by learning corresponding parameter sharing patterns from data. Our method can provably represent equivariance-inducing parameter sharing for any finite group of symmetry transformations. Our experiments suggest that it can automatically learn to encode equivariances to common transformations used in image processing tasks. We provide our experiment code at https://github.com/AllanYangZhou/metalearning-symmetries.
翻译:许多成功的深层次学习结构都与某些变化不相符合,以保存参数,改进一般化:最著名的是,进化层与输入的转变不相符合。这个方法只有在实践者知道任务的对称性,并且能够用相应的对等性手动构建一个结构时才能发挥作用。我们的目标是从数据中学习差异性,而不需要设计自定义的任务特定结构。我们通过从数据中学习相应的参数共享模式,为网络提供了一个学习和编码等同性的方法。我们的方法可以明显地代表任何有限的对称性转换组合的等同性引导参数共享。我们的实验表明,它可以自动学习将等同性与图像处理任务中使用的共同变异性编码。我们在 https://github.com/AlanYangZhou/metalearning-symetriation提供我们的实验代码。