Studying distributed computing through the lens of algebraic topology has been the source of many significant breakthroughs during the last two decades, especially in the design of lower bounds or impossibility results for deterministic algorithms. This paper aims at studying randomized synchronous distributed computing through the lens of algebraic topology. We do so by studying the wide class of (input-free) symmetry-breaking tasks, e.g., leader election, in synchronous fault-free anonymous systems. We show that it is possible to redefine solvability of a task "locally", i.e., for each simplex of the protocol complex individually, without requiring any global consistency. However, this approach has a drawback: it eliminates the topological aspect of the computation, since a single facet has a trivial topological structure. To overcome this issue, we introduce a "projection" $\pi$ of both protocol and output complexes, where every simplex $\sigma$ is mapped to a complex $\pi(\sigma)$; the later has a rich structure that replaces the structure we lost by considering one single facet at a time. To show the significance and applicability of our topological approach, we derive necessary and sufficient conditions for solving leader election in synchronous fault-free anonymous shared-memory and message-passing models. In both models, we consider scenarios in which there might be correlations between the random values provided to the nodes. In particular, different parties might have access to the same randomness source so their randomness is not independent but equal. Interestingly, we find that solvability of leader election relates to the number of parties that possess correlated randomness, either directly or via their greatest common divisor, depending on the specific communication model.


翻译:通过代数地形学的透镜进行分布式计算研究是过去二十年来许多重大突破的源头,特别是在设计下限或确定性算法的不可能结果方面。 本文的目的是研究通过代数地形学的透镜进行随机同步分布式计算。 我们这样做的方法是研究广泛的类( 无投入的)对称破碎任务, 例如, 领导选举, 在同步的无错匿名系统中进行。 我们显示, 有可能重新定义“ 本地” 任务的随机可解性, 也就是说, 用于协议性综合体的每一种简单度或不可能的结果, 而不需要任何全球的一致性。 但是, 这个方法有一个背影: 它消除了计算中的表面分布式方面, 因为一个单一的表面结构有一个微不足道的表层结构。 为了克服这个问题, 我们引入了一个“ 预测” $\ pion 和 输出复合体的“ $\ pue $ $ ” 的“ ” 。 每一个简单 $\ sigma $ 都在一个复杂的访问源中找到, $\\ gigma $ ; ; 后一个丰富的直观的直径直径直观结构结构结构结构, 以取代了我们所缺的直观的直观的直观的直观选择, 。 。 直观的直观的直观的直观, 。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月16日
Computing Permanents on a Trellis
Arxiv
0+阅读 · 2021年7月15日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员