We propose entropy-preserving and entropy-stable partitioned Runge--Kutta (RK) methods. In particular, we extend the explicit relaxation Runge--Kutta methods to IMEX--RK methods and a class of explicit second-order multirate methods for stiff problems arising from scale-separable or grid-induced stiffness in a system. The proposed approaches not only mitigate system stiffness but also fully support entropy-preserving and entropy-stability properties at a discrete level. The key idea of the relaxation approach is to adjust the step completion with a relaxation parameter so that the time-adjusted solution satisfies the entropy condition at a discrete level. The relaxation parameter is computed by solving a scalar nonlinear equation at each timestep in general; however, as for a quadratic entropy function, we theoretically derive the explicit form of the relaxation parameter and numerically confirm that the relaxation parameter works the Burgers equation. Several numerical results for ordinary differential equations and the Burgers equation are presented to demonstrate the entropy-conserving/stable behavior of these methods. We also compare the relaxation approach and the incremental direction technique for the Burgers equation with and without a limiter in the presence of shocks.
翻译:我们提议了一种方法,我们不仅减轻系统坚韧性,而且充分支持在离散水平上保存酶-保存和酶-稳定分解的龙格-库塔(RK) 。特别是,我们把明确的放松龙格-库塔方法扩大到IMEX-RK方法,以及针对一个系统中因规模分离或网格引发的僵硬性而引发的严重问题的一组明显的二级多式方法。我们提出的方法不仅减轻系统坚硬性,而且充分支持在离散水平上保持酶-保护与酶-可变性特性。放松方法的关键思想是用一个放松参数调整步骤完成步的步数,以便时间调整的溶液在离散水平上满足酶条件。放松参数是通过在每个时间步骤中解决一个标定的非线性方程式来计算的;然而,对于四边形的酶函数,我们从理论上得出放松参数的明确形式,并用数字来证实放松参数在布尔格方程式的方程式中起作用。普通差异方程式和布尔格方程式的几项数字结果,用来显示在离散水平水平上维持/可变/可变式的方程式行为。我们还将这些方法的变式和变式与递定的方程式与变式方法进行比较。