This article presents an approach for modelling hysteresis in piezoelectric materials that leverages recent advancements in machine learning, particularly in sparse-regression techniques. While sparse regression has previously been used to model various scientific and engineering phenomena, its application to nonlinear hysteresis modelling in piezoelectric materials has yet to be explored. The study employs the sequential threshold least-squares algorithm to model the dynamic system responsible for hysteresis, resulting in a concise model that accurately predicts hysteresis for both simulated and experimental piezoelectric material data. Additionally, insights are provided on sparse white-box modelling of hysteresis for magnetic materials taking non-oriented electrical steel as an example. The presented approach is compared to traditional regression-based and neural network methods, demonstrating its efficiency and robustness.
翻译:本文介绍了利用最近在机器学习方面的进步,特别是在稀土回退技术方面的进步,在派生电器材料中建立歇斯底里模型的一种方法。虽然以前曾利用微弱回归模型来模拟各种科学和工程现象,但尚未探讨在派生电器材料中将其应用于非线性歇斯底里模型。本研究报告采用连续最低门槛算法来模拟负责歇斯底里工作的动态系统,从而产生了一个精确预测模拟和实验性派生电器材料数据的歇斯底里模型的简明模型。此外,还就以非定向电钢为例的磁性材料的歇斯底里子模型提供了深入的见解。所提出的方法与传统的基于回归和神经网络方法进行了比较,显示了其效率和稳健性。