Let $G=(V,E)$ be a simple, unweighted, connected graph. Let $d(u,v)$ denote the distance between vertices $u,v$. A resolving set of $G$ is a subset $S$ of $V$ such that knowing the distance from a vertex $v$ to every vertex in $S$ uniquely identifies $v$. The metric dimension of $G$ is defined as the size of the smallest resolving set of $G$. We define the $k$-truncated resolving set and $k$-truncated metric dimension of a graph similarly, but with the notion of distance replaced with $d_k(u,v) := \min(d(u,v),k+1)$. In this paper, we demonstrate that computing $k$-truncated dimension of trees is NP-Hard for general $k$. We then present a polynomial-time algorithm to compute $k$-truncated dimension of trees when $k$ is a fixed constant.
翻译:Let $G = (V,E) 美元是一个简单、不加权、连结的图形。让 $(u,v) $ 表示顶点之间的距离 $u,v 美元。 解决 $G$ 的一组是 $V 的子数 $S 美元, 这样了解顶点从顶点美元到每顶顶点美元之间的距离 $S 美元, 唯一能识别 $v 美元。 $G 的公吨尺寸被定义为最小溶点为$1的大小。 我们同样地定义了 $k$- trunced 溶点和 $k$- trunced 公标点数, 但以 $_ k(u,v) = min(d,v) k+1) 美元取代的距离概念。 在本文中, 我们证明, $美元是固定不变的, 计算树的顶点尺寸是 $-Hard 。 然后我们提出一个计算 $- k- y- time 算法来计算 $- truncate dicate distrate distrate distrate distrate distrate spide spidefide.