We compute the Tracy-Widom distribution describing the asymptotic distribution of the largest eigenvalue of a large random matrix by solving a boundary-value problem posed by Bloemendal. The distribution is computed in two ways. The first method is a second-order finite-difference method and the second is a highly accurate Fourier spectral method. Since $\beta$ is simply a parameter in the boundary-value problem, any $\beta> 0$ can be used, in principle. The limiting distribution of the $n$th largest eigenvalue can also be computed. Our methods are available in the Julia package TracyWidomBeta.jl.
翻译:我们通过解 Bloemendal 提出的边值问题来计算 Tracy-Widom 分布,该分布描述大型随机矩阵的最大特征值的渐近分布。我们使用了两种方法来计算分布。第一种方法是二阶有限差分法,第二种方法是高精度的 Fourier 谱方法。由于$\beta$ 只是边值问题中的一个参数,因此原则上可以使用任何 $β>0$。我们还可以计算第 $n$ 个最大特征值的极限分布。我们的方法已经在 Julia 包 TracyWidomBeta.jl 中实现。