Many applications produce multiway data of exceedingly high dimension. Modeling such multi-way data is important in multichannel signal and video processing where sensors produce multi-indexed data, e.g. over spatial, frequency, and temporal dimensions. We will address the challenges of covariance representation of multiway data and review some of the progress in statistical modeling of multiway covariance over the past two decades, focusing on tensor-valued covariance models and their inference. We will illustrate through a space weather application: predicting the evolution of solar active regions over time.
翻译:许多应用生成了超高维度的多路数据。在多通道信号和视频处理中,这种多路数据建模非常重要,传感器生成多索引数据,例如空间、频率和时空等维度。我们将应对多路数据的共变代表性的挑战,并审查过去二十年多路共变统计建模的一些进展,重点是高价值的多路共变模型及其推断。我们将通过空间气象应用来说明:预测太阳活跃区域的演变。