Software requirements specification is undoubtedly critical for the whole software life-cycle. Nowadays, writing software requirements specifications primarily depends on human work. Although massive studies have been proposed to fasten the process via proposing advanced elicitation and analysis techniques, it is still a time-consuming and error-prone task that needs to take domain knowledge and business information into consideration. In this paper, we propose an approach, named ReqGen, which can provide recommendations by automatically generating natural language requirements specifications based on certain given keywords. Specifically, ReqGen consists of three critical steps. First, keywords-oriented knowledge is selected from domain ontology and is injected to the basic Unified pre-trained Language Model (UniLM) for domain fine-tuning. Second, a copy mechanism is integrated to ensure the occurrence of keywords in the generated statements. Finally, a requirement syntax constrained decoding is designed to close the semantic and syntax distance between the candidate and reference specifications. Experiments on two public datasets from different groups and domains show that ReqGen outperforms six popular natural language generation approaches with respect to the hard constraint of keywords(phrases) inclusion, BLEU, ROUGE and syntax compliance. We believe that ReqGen can promote the efficiency and intelligence of specifying software requirements.


翻译:目前,编写软件要求的规格无疑对整个软件寿命周期至关重要。目前,编写软件要求的规格主要取决于人的工作。虽然已提议进行大量研究,以通过提出先进的引导和分析技术来加快这一过程,但仍然是一项耗时和容易出错的任务,需要考虑到域内知识和商业信息。在本文件中,我们提议了一个名为ReqGen的方法,它可以通过根据某些给定关键词自动生成自然语言要求规格来提供建议。具体地说,ReqGen由三个关键步骤组成。首先,以关键字为导向的知识是从域内文学中挑选出来的,并被注入到基本的统一、预先训练的语言模型(UniLM)中,用于域微调。第二,将一个复制机制整合起来,以确保生成的报表中出现关键字。最后,要求语法限制解码是为了关闭候选人和参考规格之间的语义和语法距离。对来自不同组和领域的两个公共数据集的实验表明,ReqGen 将六种通用的自然语言生成方法与关键词(口令)的硬性约束性约束方法相违背,而我们认为,而ReqGEusax要求的遵守了REusax。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员