With the increasing demand of intelligent systems capable of operating in different user contexts (e.g. users on the move) the correct interpretation of the user-need by such systems has become crucial to give a consistent answer to the user query. The most effective techniques which are used to address such task are in the fields of natural language processing and semantic expansion of terms. Such systems are aimed at estimating the actual meaning of input queries, addressing the concepts of the words which are expressed within the user questions. The aim of this paper is to demonstrate which semantic relation impacts the most in semantic expansion-based retrieval systems and to identify the best tradeoff between accuracy and noise introduction when combining such relations. The evaluations are made building a simple natural language processing system capable of querying any taxonomy-driven domain, making use of the combination of different semantic expansions as knowledge resources. The proposed evaluation employs a wide and varied taxonomy as a use-case, exploiting its labels as basis for the expansions. To build the knowledge resources several corpora have been produced and integrated as gazetteers into the NLP infrastructure with the purpose of estimating the pseudo-queries corresponding to the taxonomy labels, considered as the possible intents.


翻译:由于对能够在不同用户环境(如移动中的用户)操作的智能系统的需求日益增加,正确解释这些系统对用户需要的正确解释已成为对用户查询作出一致答复的关键。处理这种任务的最有效技术是在自然语言处理和语义扩展领域。这些系统旨在估计输入查询的实际含义,处理用户问题中表达的词词的概念。本文件的目的是说明在语义扩展检索系统中哪些语义关系影响最大,并在结合这种关系时确定准确性和噪音引进之间的最佳取舍。评价建立一个简单的自然语言处理系统,能够查询任何由分类学驱动的领域,利用不同语义扩展的组合作为知识资源。拟议的评价采用广泛而多样的分类学作为使用案例,利用其标签作为扩展的基础。为了估计可能存在的税种标签,已经制作了若干公司,并将其作为地名索引纳入国家地名学基础设施,作为估计可能采用的假税种标签。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月22日
Arxiv
0+阅读 · 2023年3月21日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
18+阅读 · 2020年10月9日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员