Network estimation from multi-variate point process or time series data is a problem of fundamental importance. Prior work has focused on parametric approaches that require a known parametric model, which makes estimation procedures less robust to model mis-specification, non-linearities and heterogeneities. In this paper, we develop a semi-parametric approach based on the monotone single-index multi-variate autoregressive model (SIMAM) which addresses these challenges. We provide theoretical guarantees for dependent data and an alternating projected gradient descent algorithm. Significantly we do not explicitly assume mixing conditions on the process (although we do require conditions analogous to restricted strong convexity) and we achieve rates of the form $O(T^{-\frac{1}{3}} \sqrt{s\log(TM)})$ (optimal in the independent design case) where $s$ is the threshold for the maximum in-degree of the network that indicates the sparsity level, $M$ is the number of actors and $T$ is the number of time points. In addition, we demonstrate the superior performance both on simulated data and two real data examples where our SIMAM approach out-performs state-of-the-art parametric methods both in terms of prediction and network estimation.


翻译:从多变点进程或时间序列数据得出的网络估计是一个根本性的问题。先前的工作侧重于需要已知的参数模型的参数学方法,这使得估计程序不那么健全,无法模拟错误的特性、非线性和异质性。在本文中,我们根据单体单体单指数多变性自动递减模型(SIMAM)制定了半参数法,以应对这些挑战。我们为依赖数据和交替预测梯度下降算法提供理论保证。我们没有明确假定该过程的混合条件(尽管我们确实需要类似于限制强烈共性的条件),并且我们达到了表格$(O-\\\frac{1\%3\\\\\\\\\\\\ \ \ qrt{s\log}}(在独立设计案例中是最佳的)的半参数。我们为显示宽度水平的网络的最大度的门槛是$, $是行为者的数量,$T$是时间点。此外,我们还在模拟模型数据和两个模型中展示了S-AM预测方法的优劣性业绩,在S-marg-al as-al asim a y y y y work y at at at ex at at suggid ex ex ex subild ex ex ex ex ex ide subit at at at at subit sublement at sublement sublement sublement at sublement at sublement at subild thes.

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
50+阅读 · 2020年12月14日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
50+阅读 · 2020年12月14日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员