Misbehavior in online social networks (OSN) is an ever-growing phenomenon. The research to date tends to focus on the deployment of machine learning to identify and classify types of misbehavior such as bullying, aggression, and racism to name a few. The main goal of identification is to curb natural and mechanical misconduct and make OSNs a safer place for social discourse. Going beyond past works, we perform a longitudinal study of a large selection of Twitter profiles, which enables us to characterize profiles in terms of how consistently they post highly toxic content. Our data spans 14 years of tweets from 122K Twitter profiles and more than 293M tweets. From this data, we selected the most extreme profiles in terms of consistency of toxic content and examined their tweet texts, and the domains, hashtags, and URLs they shared. We found that these selected profiles keep to a narrow theme with lower diversity in hashtags, URLs, and domains, they are thematically similar to each other (in a coordinated manner, if not through intent), and have a high likelihood of bot-like behavior (likely to have progenitors with intentions to influence). Our work contributes a substantial and longitudinal online misbehavior dataset to the research community and establishes the consistency of a profile's toxic behavior as a useful factor when exploring misbehavior as potential accessories to influence operations on OSNs.
翻译:在网上社交网络(OSN)中,Misbehavavor是一个不断增长的现象。迄今为止的研究往往侧重于部署机器学习,以识别和分类欺凌、侵略和种族主义等不当行为的类型。识别的主要目的是遏制自然和机械不当行为,使OSNs成为社会话语更安全的地方。除了以往的作品外,我们还对大量选择的Twitter简介进行了纵向研究,从而使我们能够以它们如何一贯地张贴高毒性内容来描述其特征。我们的数据涵盖122K Twitter简况的14年推文和超过293M Twitter的14年。从这些数据中,我们选择了毒性内容一致性的最极端简况,并审查了其推文及其共享的领域、标签和URL。我们发现,这些选定简况保持了狭窄的主题,在标签、URLs和域的多样性较低,它们在主题上彼此相似(如果不是通过意图,那么通过协调的方式),而且具有与机能相似的行为的高度可能性(大概是预言者,从而在对社区的研究中树立了一个长期的动机,从而确定毒性行为的潜在影响)。我们的工作贡献着一个实质性和动态。