While Graph Neural Networks (GNNs) are popular in the deep learning community, they suffer from several challenges including over-smoothing, over-squashing, and gradient vanishing. Recently, a series of models have attempted to relieve these issues by first augmenting the node features and then imposing node-wise functions based on Multi-Layer Perceptron (MLP), which are widely referred to as GA-MLP models. However, while GA-MLP models enjoy deeper architectures for better accuracy, their efficiency largely deteriorates. Moreover, popular acceleration techniques such as stochastic-version or data-parallelism cannot be effectively applied due to the dependency among samples (i.e., nodes) in graphs. To address these issues, in this paper, instead of data parallelism, we propose a parallel graph deep learning Alternating Direction Method of Multipliers (pdADMM-G) framework to achieve model parallelism: parameters in each layer of GA-MLP models can be updated in parallel. The extended pdADMM-G-Q algorithm reduces communication costs by introducing the quantization technique. Theoretical convergence to a (quantized) stationary point of the pdADMM-G algorithm and the pdADMM-G-Q algorithm is provided with a sublinear convergence rate $o(1/k)$, where $k$ is the number of iterations. Extensive experiments demonstrate the convergence of two proposed algorithms. Moreover, they lead to a more massive speedup and better performance than all state-of-the-art comparison methods on nine benchmark datasets. Last but not least, the proposed pdADMM-G-Q algorithm reduces communication overheads by up to $45\%$ without loss of performance. Our code is available at \url{https://github.com/xianggebenben/pdADMM-G}.


翻译:虽然GA-MLP(GM-MLP)模型在深层学习界很受欢迎,但它们也面临若干挑战,包括超超音速、超震和梯度消失。最近,一系列模型试图通过首先增加节点特征,然后根据多光谱(MLP)(MLP)模型(GA-MLP)实施节点功能。然而,尽管GA-MLP模型拥有更深层次的架构,以便提高准确性,但其效率大为恶化。此外,由于图中样本(即节点)的依赖性,无法有效应用诸如超音速变换或数据极度等流行加速技术。为了解决这些问题,在本文件中,而不是数据平行,我们提议一个平行的图形深度学习解调方向方法(pdADMMM-G-G-MLMM)模型实现模型平行化:GA-MLP模型的每一层的参数可以同步更新。在图中扩展的PDMM-Q-Q(O-al-Q)调调降9Q(oG-al-al-al-al-al-alationalationalationalationalationalation) QQQQQQ-al-al-rational-al-al-modalationalationalationalationalationalationalg-movallupation) 数据比,通过引入了我们G)所有G-rationalational-modxxxxxxxxxxxxxxxxxxx,它提供一个更低运算法。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
25+阅读 · 2021年4月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月17日
Arxiv
0+阅读 · 2023年1月15日
Arxiv
0+阅读 · 2023年1月15日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
20+阅读 · 2019年11月23日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员