Federated learning (FL) is a newly emerging distributed learning paradigm that allows numerous participating clients to train machine learning models collaboratively, each with its data distribution and without sharing their data. One fundamental bottleneck in FL is the heavy communication overheads of high-dimensional models between the distributed clients and the central server. Previous works often condense models into compact formats by gradient compression or distillation to overcome communication limitations. In contrast, we propose FedCliP in this work, the first communication efficient FL training framework from a macro perspective, which can position valid clients participating in FL quickly and constantly prune redundant clients. Specifically, We first calculate the reliability score based on the training loss and model divergence as an indicator to measure the client pruning. We propose a valid client determination approximation framework based on the reliability score with Gaussian Scale Mixture (GSM) modeling for federated participating clients pruning. Besides, we develop a communication efficient client pruning training method in the FL scenario. Experimental results on MNIST dataset show that FedCliP has up to 10%~70% communication costs for converged models at only a 0.2% loss in accuracy.


翻译:联邦学习(FL)是一个新兴的分布式学习模式,它使许多参与的客户能够合作地培训机器学习模式,每个客户都有数据分布和不分享数据。FL的一个基本瓶颈是分布式客户和中央服务器之间高维模型的繁忙通信管理。先前的工作经常通过梯度压缩或蒸馏将模型压缩为紧凑格式,以克服通信限制。与此形成对照的是,我们在此工作中提议FedCliP,这是从宏观角度出发的第一个通信高效FL培训框架,它能够让有效的客户快速和不断地使用FL冗余客户。具体地说,我们首先根据培训损失和模型差异计算可靠性分数,作为衡量客户运行的指标。我们提出一个有效的客户确定近似框架,其依据是Gausian 比例混凝土(GSMSM) 模型的可靠性评分,以克服通信阻断。此外,我们在FL设想中开发一个高效的客户程序运行培训方法。MNIST数据设置的实验结果表明,FCliP仅以0.2%的准确度计算出组合模型的10-70%的通信成本。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
42+阅读 · 2020年12月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员