Deep learning has shown astonishing performance in accelerated magnetic resonance imaging (MRI). Most state-of-the-art deep learning reconstructions adopt the powerful convolutional neural network and perform 2D convolution since many magnetic resonance images or their corresponding k-space are in 2D. In this work, we present a new approach that explores the 1D convolution, making the deep network much easier to be trained and generalized. We further integrate the 1D convolution into the proposed deep network, named as One-dimensional Deep Low-rank and Sparse network (ODLS), which unrolls the iteration procedure of a low-rank and sparse reconstruction model. Extensive results on in vivo knee and brain datasets demonstrate that, the proposed ODLS is very suitable for the case of limited training subjects and provides improved reconstruction performance than state-of-the-art methods both visually and quantitatively. Additionally, ODLS also shows nice robustness to different undersampling scenarios and some mismatches between the training and test data. In summary, our work demonstrates that the 1D deep learning scheme is memory-efficient and robust in fast MRI.


翻译:深层学习在加速磁共振成像(MRI)中表现出惊人的性能。大多数最先进的深层学习重建都采用强大的进化神经网络,并进行2D演化,因为许多磁共振图像或相应的K空间都在2D中。在这项工作中,我们提出了一个探索1D演化的新办法,使深层网络更容易接受培训和普及。我们进一步将1D演化纳入拟议的深层网络,称为单维深低层和斯普尔西网络(ODLS),它释放了低级和稀有重建模型的循环程序。关于静脉膝部和大脑数据集的广泛结果表明,拟议的ODLS非常适合有限的培训科目,并且比视觉和定量的状态技术方法提供了更好的重建绩效。此外,ODLS还显示,对不同低度抽样的情景以及培训和测试数据之间的某些不匹配非常有力。简而言,我们的工作表明,1D深层学习计划在快速的磁共振中具有记忆力和强力。

0
下载
关闭预览

相关内容

【2021新书】高阶网络,150页pdf,Higher-Order Networks
专知会员服务
87+阅读 · 2021年11月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
3+阅读 · 2020年2月5日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员