We study the computational complexity of computing or approximating a quasi-proper equilibrium for a given finite extensive form game of perfect recall. We show that the task of computing a symbolic quasi-proper equilibrium is $\mathrm{PPAD}$-complete for two-player games. For the case of zero-sum games we obtain a polynomial time algorithm based on Linear Programming. For general $n$-player games we show that computing an approximation of a quasi-proper equilibrium is $\mathrm{FIXP}_a$-complete.
翻译:我们研究计算或接近准异性平衡的计算复杂性, 以计算一个完全召回的有限、 广泛形式的游戏。 我们显示, 计算一个象征性的准异性平衡的任务是 $\ mathrm{PPAD}$- 完成两个玩家游戏。 对于零和游戏来说, 我们得到了基于线性编程的多元时间算法。 对于普通的 $- player 游戏, 我们显示, 计算一个准异性平衡的近似值是$\ mathrm{FIXP ⁇ a- 完成 。