In this paper, we analyze status update systems modeled through the Stochastic Hybrid Systems (SHSs) tool. Contrary to previous works, we allow the system's transition dynamics to be functions of the Age of Information (AoI). This dependence allows us to encapsulate many applications and opens the door for more sophisticated systems to be studied. However, this same dependence on the AoI engenders technical and analytical difficulties that we address in this paper. Specifically, we first showcase several characteristics of the age processes modeled through the SHSs tool. Then, we provide a framework to establish the Lagrange stability and positive recurrence of these processes. Building on this, we provide an approach to compute the m-th moment of the age processes. Interestingly, this technique allows us to approximate the average age by solving a simple set of linear equations. Equipped with this approach, we also provide a sequential convex approximation method to optimize the average age by calibrating the parameters of the system. Finally, we consider an age-dependent CSMA environment where the backoff duration depends on the instantaneous age. By leveraging our analysis, we contrast its performance to the age-blind CSMA and showcase the age performance gain provided by the former.
翻译:在本文中,我们分析通过Stochastic 混合系统(SHS)工具建模的状态更新系统。 与以前的工作相反, 我们允许该系统的过渡动态成为信息时代(AoI)的功能。 这种依赖性使我们能够包罗许多应用程序,并为需要研究的更尖端的系统打开大门。 但是,对AoI的同样依赖也造成了本文中我们处理的技术和分析困难。 具体地说, 我们首先展示了通过SHS工具建模的年龄进程的若干特点。 然后, 我们提供了一个框架, 以建立这些进程的拉格稳定性和积极重现。 在此基础上, 我们提供了一种计算年龄过程的 m-th 时刻的方法。 有趣的是, 这种技术使我们能够通过解决一套简单的线性方方程式来接近平均年龄。 有了这个方法, 我们还提供了一种按顺序排列的矩近似方法, 通过校准系统参数来优化平均年龄。 最后, 我们考虑一个基于年龄的CSMA环境, 其后期取决于瞬时的年龄。 我们通过利用我们的分析, 将其表现与前的性能显示C-SMA的性能。