Unsafe Rust code is necessary for interoperability with C/C++ libraries and implementing low-level data structures, but it can cause memory safety violations in otherwise memory-safe Rust programs. Sanitizers can catch such memory errors at runtime, but introduce many unnecessary checks even for memory accesses guaranteed safe by the Rust type system. We introduce SafeFFI, a system for optimizing memory safety instrumentation in Rust binaries such that checks occur at the boundary between unsafe and safe code, handing over the enforcement of memory safety from the sanitizer to the Rust type system. Unlike previous approaches, our design avoids expensive whole-program analysis and adds much less compile-time overhead (2.64x compared to over 8.83x). On a collection of popular Rust crates and known vulnerable Rust code, SafeFFI achieves superior performance compared to state-of-the-art systems, reducing sanitizer checks by up to 98%, while maintaining correctness and flagging all spatial and temporal memory safety violations.


翻译:非安全Rust代码在与C/C++库互操作及实现底层数据结构时不可或缺,但它可能导致原本内存安全的Rust程序出现内存安全违规。净化器虽能在运行时捕获此类内存错误,但会对Rust类型系统已保证安全的内存访问引入大量不必要的检查。本文提出SafeFFI系统,通过优化Rust二进制文件中的内存安全检测机制,使检查仅发生在非安全代码与安全代码的边界处,从而将内存安全的保障职责从净化器移交至Rust类型系统。与既有方案不同,本设计避免了昂贵的全程序分析,并大幅降低编译时开销(仅2.64倍,而现有方案超过8.83倍)。在主流Rust代码库与已知漏洞代码集上的实验表明,SafeFFI在保持正确性并捕获所有时空内存安全违规的同时,较前沿系统实现了更优性能,将净化器检查减少高达98%。

0
下载
关闭预览

相关内容

Rust 是一种注重高效、安全、并行的系统程序语言。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员