Optical colonoscopy (OC), the most prevalent colon cancer screening tool, has a high miss rate due to a number of factors, including the geometry of the colon (haustral fold and sharp bends occlusions), endoscopist inexperience or fatigue, endoscope field of view, etc. We present a framework to visualize the missed regions per-frame during the colonoscopy, and provides a workable clinical solution. Specifically, we make use of 3D reconstructed virtual colonoscopy (VC) data and the insight that VC and OC share the same underlying geometry but differ in color, texture and specular reflections, embedded in the OC domain. A lossy unpaired image-to-image translation model is introduced with enforced shared latent space for OC and VC. This shared latent space captures the geometric information while deferring the color, texture, and specular information creation to additional Gaussian noise input. This additional noise input can be utilized to generate one-to-many mappings from VC to OC and OC to OC. The code, data and trained models will be released via our Computational Endoscopy Platform at https://github.com/nadeemlab/CEP.


翻译:最普遍的结肠癌筛查工具OC,即最流行的结肠癌筛查工具OC,由于若干因素,其误差率很高,其中包括结肠的几何学(高音折折叠和尖弯弯分解)、不经验或疲劳、视视视视视外镜领域等。我们提出了一个框架,以可视化结肠镜期间缺失的区域,并提供可行的临床解决方案。具体地说,我们利用3D重建的虚拟结肠镜检查(VC)数据,以及VC和OC共享基本几何但颜色、纹理和视镜反射等不同部分的洞察力。引入了隐性不光学图像到影像翻译模型,为OC和VC提供共同的潜在空间。这种共享的潜在空间捕捉了几何信息,同时推迟颜色、文字和视觉信息生成更多的高音素输入。这种额外噪音投入可用于生成VC至OC至OC和Compeal OC 平台的一至many 映射模型。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【深度】Deep Visualization:可视化并理解CNN
专知
11+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
1+阅读 · 2021年8月23日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【深度】Deep Visualization:可视化并理解CNN
专知
11+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员