Depth maps captured with commodity sensors are often of low quality and resolution; these maps need to be enhanced to be used in many applications. State-of-the-art data-driven methods of depth map super-resolution rely on registered pairs of low- and high-resolution depth maps of the same scenes. Acquisition of real-world paired data requires specialized setups. Another alternative, generating low-resolution maps from high-resolution maps by subsampling, adding noise and other artificial degradation methods, does not fully capture the characteristics of real-world low-resolution images. As a consequence, supervised learning methods trained on such artificial paired data may not perform well on real-world low-resolution inputs. We consider an approach to depth super-resolution based on learning from unpaired data. While many techniques for unpaired image-to-image translation have been proposed, most fail to deliver effective hole-filling or reconstruct accurate surfaces using depth maps. We propose an unpaired learning method for depth super-resolution, which is based on a learnable degradation model, enhancement component and surface normal estimates as features to produce more accurate depth maps. We propose a benchmark for unpaired depth SR and demonstrate that our method outperforms existing unpaired methods and performs on par with paired.


翻译:以商品传感器绘制的深度图往往质量低,分辨率低;这些地图需要改进,以便在许多应用中加以使用; 最先进的数据驱动的深度地图超级分辨率方法取决于同一场景的低分辨率和高分辨率地图; 获取真实世界配对数据需要专门设置; 另一种替代办法是,从高分辨率地图中产生低分辨率地图,通过子取样、添加噪音和其他人工降解方法生成低分辨率地图,不能充分捕捉真实世界低分辨率图像的特征; 因此,在这种人工配对数据方面受过培训的受监督的学习方法可能无法很好地使用真实世界低分辨率投入。 我们考虑一种基于从未受重视数据学习的深度超分辨率深度图的深度方法。 虽然提出了许多未受重视的图像到图像翻译技术,但大多数技术未能通过深度图提供有效的填补洞或重建准确的表面。 我们提出了一种不可靠的深度超分辨率的学习方法,该方法以可学习的降解模型、增强组件和地面正常估计为基础,作为制作更精确的深度地图的特征。 我们提议一种以不精确的深度图比。

1
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
83+阅读 · 2020年9月27日
【2020新书】数据科学与机器学习导论,220页pdf
专知会员服务
81+阅读 · 2020年9月14日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
“CVPR 2020 接受论文列表 1470篇论文都在这了
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
83+阅读 · 2020年9月27日
【2020新书】数据科学与机器学习导论,220页pdf
专知会员服务
81+阅读 · 2020年9月14日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员